LAMP-TR-058 MDA 9049-6C-1250

CAR-TR-955 9802167270
CS-TR-4190 N660010028910
1159987944

September 2000

Software Architecture of PSET:
A Page Segmentation Evaluation Toolkit

Song Mao and Tapas Kanungo

Language and Media Processing Laboratory
Center for Automation Research
University of Maryland
College Park, MD 20742-3275

Abstract

Empirical performance evaluation of page segmentation algorithms has become increas-
ingly important due to the numerous algorithms that are being proposed each year. In
order to choose between these algorithms for a specific domain it is important to empir-
ically evaluate their performance. To accomplish this task the document image analysis
community needs i) standardized document image datasets with groundtruth, ii) evalu-
ation metrics that are agreed upon by researchers, and iii) freely available software for
evaluating new algorithms and replicating other researchers’ results.

In an earlier paper (SPIE Document Recognition and Retrieval 2000) we published
evaluation results for various popular page segmentation algorithms using the Univer-
sity of Washington dataset. In this paper we describe the software architecture of the
PSET evaluation package, which was used to evaluate the segmentation algorithms. The
description of the architecture will allow researchers to understand the software better,
replicate our results, evaluate new algorithms, experiment with new metrics and datasets,
etc. The software is written using the C language on the SUN/UNIX platform and is
being made available to researchers at no cost.

This research was funded in part by the Department of Defense under Contract MDA 9049-6C-
1250, Lockheed Martin under Contract 9802167270, the Defense Advanced Research Projects Agency
under Cooperative Agreement N660010028910, and the National Science Foundation under Contract
11S9987944.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 2000 2. REPORT TYPE 00-09-2000 to 00-09-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Software Architecture of PSET: A Page Segmentation Evaluation Toolkit | o\ it nUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
L anguage and M edia Processing L abor atory, I nstitute for Advanced REPORT NUMBER

Computer Studies,University of Maryland,College Park,M D,20742-3275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 20
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

LAMP-TR-58 MDA 9049-6C-1250

CAR-TR-955 9802167270
CS-TR-4190 N660010028910
1159987944

September 2000

Software Architecture of PSET:
A Page Segmentation Evaluation Toolkit

Song Mao and Tapas Kanungo

Software Architecture of PSET:
A Page Segmentation Evaluation Toolkit

Song Mao and Tapas Kanungo

Language and Media Processing Laboratory
Center for Automation Research

University of Maryland, College Park, MD

Abstract

Empirical performance evaluation of page segmentation algorithms has become increas-
ingly important due to the numerous algorithms that are being proposed each year. In
order to choose between these algorithms for a specific domain it is important to empir-
ically evaluate their performance. To accomplish this task the document image analysis
community needs i) standardized document image datasets with groundtruth, ii) evalu-
ation metrics that are agreed upon by researchers, and iii) freely available software for
evaluating new algorithms and replicating other researchers’ results.

In an earlier paper (SPIE Document Recognition and Retrieval 2000) we published
evaluation results for various popular page segmentation algorithms using the Univer-
sity of Washington dataset. In this paper we describe the software architecture of the
PSET evaluation package, which was used to evaluate the segmentation algorithms. The
description of the architecture will allow researchers to understand the software better,
replicate our results, evaluate new algorithms, experiment with new metrics and datasets,
etc. The software is written using the C language on the SUN/UNIX platform and is
being made available to researchers at no cost.

This research was funded in part by the Department of Defense under Contract MDA 9049-6C-
1250, Lockheed Martin under Contract 9802167270, the Defense Advanced Research Projects Agency
under Cooperative Agreement N660010028910, and the National Science Foundation under Contract
11S9987944.

1 Introduction

It is important to quantitatively monitor progress in any scientific field. The informa-
tion retrieval community and the speech recognition community, for example, have yearly
competitions in which researchers evaluate their latest algorithms on clearly defined tasks,
datasets, and metrics. To make such evaluations possible, researchers have access to stan-
dardized datasets, metrics, and freely available software for scoring the results produced
by algorithms [18, 1].

In the Document Image Analysis area, regular evaluations of OCR accuracy have been
conducted by UNLV [3]. Page segmentation algorithms, which are crucial components of
OCR systems, were at one time evaluated by UNLV based on the final OCR results, but
not on the geometric results of the segmentation. Recently [14], we empirically compared
various commercial and research page segmentation algorithms, using the University of
Washington dataset. We used a well-defined (geometric) line-based metric and a sound
statistical methodology to score the segmentation results. Furthermore, unlike the UNLV
evaluations, we trained the segmentation algorithms prior to evaluating them.

In this paper we describe in detail the software architecture of the package called
PSET, which we used in [14] to evaluate page segmentation algorithms. This package was
developed by us at the University of Maryland and will be made available to researchers
at no cost. Publication of the package will allow researchers to implement our five-step
evaluation methodology and evaluate their own algorithms.

Software architecture can be described using methods such as Petri Nets and Data
Flow Diagrams [8]. We describe the architecture of PSET, the 1/0O file formats, etc.,
using Object-Process Diagrams (OPDs) [5], which are similar in spirit to Petri Nets.

The package, called the Page Segmentation Evaluation Toolkit (PSET), is modular,
written using the C language, and runs on the SUN/UNIX platform. The software has
been structured so that it can be used at the UNIX command line level or compiled into
other software packages by calling API functions. The description in this paper will aid
users in using, updating, and modifying the PSET package. It will also help users to add
new algorithm modules to the package and to interface it with other software tools and
packages. The PSET package includes three research page segmentation algorithms; ' a
textline-based benchmarking algorithm; and a Simplex-based optimization algorithm for
estimating algorithm parameters from training datasets.

This paper is organized as follows. In Section 2, we discuss the page segmentation
problem. In Section 3, we present our five-step page segmentation performance evaluation
methodology. In Section 4, we describe the architecture and file formats of our PSET
package in detail and show how to implement each step of our five-step performance
evaluation methodology. In Section 5, we give the hardware and software requirements
for using the PSET package. In Section 6, we discuss our future work. Finally in
Section 7, we give a summary of the article. A detailed description of our textline-based
metric 1s given in an Appendix for completeness.

'We implemented the X-Y cut algorithm [15] and the Docstrum algorithm [16]. Kise [11] provided
us the C implementation of his Voronoi-based algorithm.

2 The Page Segmentation Problem

There are two types of page segmentation, physical and logical. Physical page segmen-
tation is a a process of dividing a document page into homogeneous zones. Each of these
zones can contain one type of object. These objects can be of type text, table, figure,
halftone image, etc. Logical page segmentation is a process of assigning logical relations
to physical zones. For example, reading order labels order the physical zones in the order
in which they should be read. Similarly, assigning section and sub-section labels to phys-
ical zones creates a hierarchical document structure. In this paper, we focus on physical
page segmentation and refer to it simply as page segmentation hereafter.

Page segmentation is a crucial preprocessing step for an OCR system. In many
cases, OCR engine recognition accuracy depends heavily on page segmentation accuracy.
For instance, if a page segmentation algorithm merges two text zones horizontally, the
OCR engine will recognize text across text zones and hence generate unreadable text.
Page segmentation algorithms can be categorized into three types: top-down, bottom-
up, and hybrid approaches. Top-down approaches iteratively divide a document page
into smaller zones according to some criterion. The X-Y cut algorithm developed by
Nagy et al. [15] is a typical top-down algorithm. Bottom-up approaches start from
document image pixels, and iteratively group them into bigger regions. The Docstrum
algorithm of O’Gorman [16] and the Voronoi-based algorithm of Kise et al. [11] are
representative bottom-up approaches. Hybrid approaches are usually a mixture of top-
down and bottom-up approaches. The algorithm of Pavilidis and Zhou [17] is an example
of the hybrid approach that employs a split-and-merge strategy.

3 Performance Evaluation Methodology

In order to objectively evaluate page segmentation algorithms, a performance evaluation
methodology should take into consideration the performance metric, the dataset, the
training and testing methods, and the methodology of analyzing experimental results. In
this section, we introduce a five-step methodology that we proposed earlier [14, 12, 13].
The PSET package is an implementation of this methodology.

Let D be a given dataset containing (document image, groundtruth) pairs (7,),
and let 7 and S be a training dataset and a test dataset respectively. The five-step
methodology is described as follows:

1. Randomly divide the dataset D into two mutually exclusive datasets: a training
dataset 7 and a test dataset S. Thus, D =7 US and 7 NS = ¢, where ¢ is the
empty set.

2. Define a computable performance metric p(/, G, R). Here [is a document image,
(7 is the groundtruth of 7, and R is the OCR segmentation result on /. In our case,
p(I,G, R) is defined as textline accuracy, as described in the Appendix.

3. Given a segmentation algorithm A with a parameter vector p#, automatically
search for the optimal parameter value p# for which an objective function f(p#;7,p, A)

assumes the optimal value on the training dataset 7. In our case, this objective
function is defined as the average textline error rate on a given training dataset:

1
f(pA;T,A,p) = #—,]. (Z): 1_P(G7 SegA(]apA)) :
1,G)eT

4. Evaluate the segmentation algorithm A with the optimal parameter p# on the test
dataset S by

® ({p(G, Sega(1,p")I(1,G) € S})

where @ is a function of the performance metric p on each (document image,
groundtruth) pair (7,) in the test dataset S, and Sega(-,-) is the segmentation
function corresponding to A. The function ® is defined by the user. In our case,

® ({p(G, Segal1,pY)|(1,G) € S}) = 1= f(p*; S, p, A),

which is the average of the textline accuracy p(G, Sega(I,p?)) achieved on each
(document image, groundtruth) pair (7, &) in the test dataset S.

5. Perform a statistical analysis to evaluate the statistical significance of the evaluation
results, and analyze the errors to identify /hypothesize why the algorithms perform
at their respective levels.

4 Architecture, File Formats, and Evaluation Methodology

In this section, we first describe the software architecture of the PSET package and the
formats of the files used to communicate with the package. Next we show how this soft-
ware package can be used to implement the five steps of the page segmentation evaluation
methodology described in Section 3. Generic file format descriptions as well as specific
examples are provided, for clearer understanding. This description of the architecture
and file formats will allow users to i) understand the working of the PSET package,
ii) replicate our results, iii) modify the parameter files for datasets, metrics, etc., and
conduct their own evaluation experiments, iv) understand, maintain and improve the
software, and v) evaluate new algorithms and compare the results with existing algo-
rithms. The PSET package has been used to evaluate five page segmentation algorithms
(14, 13].

4.1 Architecture and File Formats

The PSET package can be used to i) automatically train a given page segmentation
algorithm, i.e., automatically select optimal algorithm parameters on a given training
dataset, and ii) evaluate the page segmentation algorithm with the optimal parameters
found in i) on a given test dataset. Figure 1 shows the overall architecture of the PSET
package and illustrates these two functionalities.

The overall architecture shows all the input files that are needed to conduct the
training and testing experiments for a given page segmentation algorithm, and all the

3

Groundtruth [Training Dataset Train Protocol Test Dataset Test Protocol
(DAF) Filename List File Benchmark Filename List File Groundtruth
(Ist) (trp) Pa/r*;rgn%nmle (Is) (trp) (DAP)
(bpr)
o mengﬁaion Weight
gorithm } -
Paraméter File ——————>(TranSey @ (;"g% > Tesq @
(spr)
mentation
Algorithm
Shell File
Document (sh)
'EPI_?%ES Dlocument
— mages
Optimization
Angori thm MR
Parameter File
(opn) _
Train Report Optimal Test Report
File Igorithm File
(tm) Pararpsgtg File| (ter)

Figure 1: Overall PSET architecture. The left half of the architecture represents the
training phase; the right half represents the testing phase. Note that in the testing
phase, the optimal page segmentation parameter found in the training phase is used. The
training and testing phases use the same performance metric related input files (bench-
mark algorithm parameter file (bpr) and weight file (wgt)) and the same segmentation
algorithm shell file (sh).

Table 1: Summary of the file formats in the PSET package.

File Type Extension | Description

Dataset List File Ist It saves the root name of each image in a dataset.

Train Protocol File trp It saves the protocol parameters of the training experiment.
Test Protocol File tep It saves the protocol parameters of the testing experiment.
Segmentation Algorithm spr It saves the parameters of a page segmentation algorithm
Parameter File that are to be trained.

Benchmarking Algorithm bpr It saves all parameters of a benchmarking algorithm.
Parameter File

Optimization Algorithm opr It saves all parameters of an optimization algorithm.
Parameter File

Groundtruth File DAF It saves document images and their groundtruth information.
Segmentation Result File dals It saves document images and their segmentation results.
Train Report File trr It saves the training result of a segmentation algorithm.
Test Report File ter It saves the test result of a segmentation algorithm.
Weight File wgt It saves a set of weights for a set of error measures.
Segmentation Algorithm sh It saves a shell command for running segmentation

Shell File algorithm executable. It is a Bourn shell program.

output files generated by the training and testing procedures. Table 1 lists all the files
used, their purposes, and their file name extensions.

Input files include various initial algorithm parameter files (an optimization algo-
rithm parameter file (opr), a page segmentation algorithm parameter file (spr), and a
benchmark algorithm parameter file (bpr)), dataset files (Ist), a shell file (sh), and exper-
imental protocol files (training protocol file (trp) and test protocol file (tep)). Users need
to provide these files to the PSET package to conduct training or testing experiments.
The output files of the training phase include a training report file (trr) and an opti-
mal segmentation algorithm parameter file (spr). The training report file (trr) records
intermediate as well as final training results of the training experiment. The optimal
segmentation algorithm parameter file (spr) records the optimal segmentation algorithm
parameter values found in the training phase. The output of the testing phase is a testing

report file (ter), which records a set of error measures, timing and performance scores for
each image in the test dataset, and a final average performance score over all images in
the test dataset. Figure 2 shows various input file formats. Figure 3 shows the training
report file format and Figure 4 shows the test report file format.

[comments] # [comments] # [comments]

DATASET = <dataset file name> DATASET = <testing dataset file name> <parameter | name> = <value>
GROUNDTRUTHDIR = <groundiruth dircctory name> GROUNDTRUTH.DIR = <groundiruth directory name> <parameter 2 name> = <value>
IMG DIR — <image dircctory name> IMG DIR Z Zimage directory names. B

GT_SUFFIX = <groundtruth file suffix> Pt - : =

3 : : = G FIX = <groundtruth file suffix>

s = <segmentation result file suffix> G SUFFIX C e e e =

IMGS X — Zimage file suffix> S SUFFIX | = \?('p,m(‘nldlmnwsut ile suffix> B
TRAIN.RESULT-DIR = <training result file location> IMG SUFFIX = <image file suffix> . = .
OPT_ALG — <optimization algorithm names TEST_RESULT_DIR = <testing result file location> <parameter N name> = <value>
BEN_ALG = <benchmark algorithm name> BEN_ALG — <benchmark algorithm name>

SEG-ALG = <page segmentation algorithm names SEG ALG = <page segmentation algorithm name>

(a)

(b)

()

File Attribute Name

Description

DATASET

The filename of a list file that saves the root name of
each image in a dataset.

GROUNDTRUTH_DIR

The location of the groundtruth files.

IMG_DIR The location of the image files.

GT_SUFFIX The suffix of a groundtruth filename, e.g. the suffix of
groundtruth file “A001.DAF” is “.DAF”.

SG_SUFFIX The suffix of a segmentation result filename, e.g. the suffix of

segmentation result file “A001.dafs” is “.dafs”.

The suffix of an image filename, e.g. the suffix of image file
“A001BIN.TIF” is “BIN.TIF”.

TRAIN_RESULT_DIR | The location of the training result files generated by a training experiment.
TEST_RESULT_DIR The location of the testing result files generated by a test experiment.

IMG_SUFFD

OPT_ALG The name of the optimization algorithm that is to be used.
BEN_ALG The name of the benchmarking algorithm that is to be used.
SEG_ALG The name of the page segmentation algorithm that is to be used.

(d)

Figure 2: Input file formats. The training protocol file format is shown in (a), the test
protocol file format is shown in (b), and the algorithm parameter file format is shown in
(c). The description of the attributes in (a) and (b) is given in (d).

The parameter values in the parameter files are first read into the corresponding data
structures inside the TrainSeg and the TestSeg modules as shown in Figure 5. The Train
module shown in Figure 5(a) is shown at a finer level of detail in Figure 6, where the
interaction of the optimization algorithm and the objective function computation module
is illustrated. A detailed view of the Objective Funclion Genscore showing the interaction
between the segmentation algorithm module and the performance metric computation
module is shown in Figure 7(a). Finally, a blown-up view of the Test module shown in

Figure 5(b) is shown in Figure 7 (b).

4.2 Implementing the Evaluation Methodology

In this section we show how a user can implement each step of the five-step evaluation
methodology described in Section 3. Each variable in the methodology is mapped to a
specific parameter file and each step is mapped to a specific group of modules in the
package.

1. The training dataset 7 is specified in the image root name list file (Ist). The file
name and location of the list file and the location of the image and groundtruth files

5

|experimental environments]

#

Feval pll] 2] o pln] score timing plow[1] plow[2] ... plow[n] Flow

1 <data> <data> - <data> <data> <data> <data> <data> C <data> <data>
2 <data> <data> - <data> <data> <data> <data> <data> C <data> <data>
M <data> <data> - <data> <data> <data> <data> <data> C <data> <data>
Optimal_Parameter_Vector = <param 1> <param 2> . . . <param N>

Optimal_Performance_Value = <data>

End of the training.

(a)

Item Name Description
Feval Number of objective function evaluations.
pl1], p[2], ---. p[n] Current objective function parameter vector value;

here the objective function parameter vector is the
page segmentation parameter vector being trained.

n is the dimensionality of the parameter vector.

score Current performance measure, in this case,
textline error rate.

timing The time it takes to obtain the current score.

plow[1], plow[2], ..., plow[n] | The objective function parameter vector value that
gives the best score so far.

Flow The best score so far — in this case, the minimum

textline error rate so far.

(b)

Figure 3: The training report file format. The format is shown in (a) and the description
of each column entry in (a) is shown in (b).

<experimental environments>

#
#Img nSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
<imgroot name 1> <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>

<imgroot name 2> <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>

<imgroot name M> <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>

The average textline accuracy = <data>

End of testing.

(a)

Column Entry | Description

Img The root name of the current image file.

nSpl The number of split errors.

nMrg The number of horizontal merge errors.

nFA The number of false alarm errors.

nSplL The number of split textlines.

nMrgL The number of horizontally merged textlines.

nMisL The number of mis-detected textlines.

nErrL The number of error textlines (textlines that are
either split, horizontally merged or mis-detected).

nGtl The number of groundtruth textlines.

score The performance measure (textline error rate) on current image.

timing The time taken to obtain the score.

(b)

Figure 4: The test report file format. The format is shown in (a) and the description of
each column entry in (a) is shown in (b).

Bencmark
Trein Protoool Algorthm
Partindta File|

(bpr)

Seqmenttion
“Algorithm
Pacnea Fig

mentaion

aaaaaaaa

Figure 5: Parameter reading stage of the training phase (a) and the testing phase (b).
At this level, various parameter files are read into their corresponding data structures
which are fed into the Train and Test modules.

Test Protocol Benchmark
Alg. Parameter|
Data Structure

Weight File
Data Structur

Shell File (wgt)

Seqmentation
“Algorithm
(sh)

Figure 6: The Train module. In this module, the objective function is optimized over a
given training dataset. Two files are generated by this module, a train report file (trr)
and an optimal segmentation algorithm parameter file (spr).

are specified in the training protocol file (trp). This information is later read into
the Train Protocol Parameter Data Structure as shown in Figure 5(a). Similarly, a
test dataset S is specified in another image root name list file (Ist). The file name
and location of the list file and the location of image and groundtruth files are
specified in the test protocol file (tep). This information is later read into the test
protocol parameter data structure as shown in Figure 5(b). Other experimental
protocol parameters such as file suffix and algorithms used are also specified in the
training protocol file (trp) and test protocol file (tep). Figures 2(a) and (b) show
generic formats for these two files and Figure 8 shows samples of these two files.

2. The performance metric p(/, G, R) is computed in module B, shown in Figures 7(a)
and (b). (1,G) is an (image, groundtruth) pair, which is represented by two single
pages in the architecture, and R is the segmentation result file represented by
Segmentation Result (dafs). The error counter algorithm for generating a set of
error measures is implemented in the Bench module. In the BenchScoring module,

7

S

i

S Fle
C]

Test Protocol
Parameter
DaaSuciure|

oo | |
(wgt)

Optimal
Segentalion
Alg, Paameter
Data Siructure|

Benchmark
Alg. Parameter
Data Sucture|

mertation
iy P
DétaSiructure

“Train Protoool
&
DaaSructure

Welght File
(wgt)

Salp
Expariment
Environment

Do [— —7 . [' @) | paameas
mages xperiments | . -
W) | paandns [y SV o .
Imdge [Vo
@ “ : .

Sasiel
ece an
Grotginn
Far

: Segertation
| Realt
: ey b
Groundiruth froundinth [C
(DAR) 1 (0AR) Beh je———————————— Reatwegn) | !
Weight 3 !
DaaSote| |

Seect Nex!

imegeand
Grouduth
Par

Groundtruth
(0AR)

: Lo : Compute

! Score b Average

| DataStructure| [Score
‘Compute | ! ,@
Average : : Y

Soore.

Finished | o

Figure 7: Software architectures of the objective function module and the test module.
Module A represents the page segmentation algorithm module, module B represents
the page segmentation error counter and scoring module, and module C represents the
objective function module. The test module in (b) has sub-modules similar to those
in (a). It also has a module for computing a final testing performance score (average
textline accuracy).

a weighted error measure 1 — p(I,G, R) is computed. The formal definitions of
error measures and performance metrics are given in the Appendix. To compute
a performance metric, two input files, a benchmark algorithm parameter file (bpr)
and a weight file (wgt), are required. Examples of these two files are shown in
Figure 13. Users can substitute their own performance metrics and error counters
in place of these two modules. However, this also requires that the users write a
new ReadBenchParam module and define a new benchmark algorithm parameter
data structure as shown in Figure 5.

3. The objective function f(p#; 7T, A, p) is represented by the module C in Figure 7(a),
where page segmentation algorithm A is represented by module A, the training
dataset 7 is specified in the train protocol parameter data structure, the compu-
tation of performance metric p is conducted in module B, and objective function
parameter vector p# is represented by the segmentation algorithm parameter data
structure in the architecture. The optimization procedure is shown in Figure 6
in a simplified representation. In addition, a benchmark algorithm parameter file
(bpr), weight file (wgt), shell file (sh), list file (Ist), training protocol file (trp),

Training experiment protocal # Test experiment protocal

By: Song Mao # By: Song Mao

Feb. 21, 2000 # Teb. 21, 2000

LAMP, UMCP # LAMP, UMCP

DATASET = train.Ist D — test.ls
GROUNDTRUTHDIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/DAFS/ DATASET = bt

GROUNDTRUTILDIR = /fs/mirak2/LAMP/UWITI/ENGLISH/LINEWORD/DATS/
/fs/mirak2/LAMP /UWIIT/ENGLISTT/LINEWORD/IMAGEBIN/
DAF

IMG_DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/IMAGEBIN/
GT SUFFIX DAF
S X dafs

MG DIR
GTSUFFIX

IMG SUFFIX = BIN.TIF SG_SU T‘:FIX . - "IAff
TRAIN_RESULT_DIR =./ IMG_SUFTFIX = BIN.TIF
OPT_ALG = simplex TEST_RESULT_DIR -

BENALG = textline based BEN.ALG = textline_based
SEG_ALG = doestrum SEG-ALG = xycut

(a) (b)

Figure 8: Sample protocol files. From both the train protocol file (a) and the test protocol
file (b), we can see that the list files of the training dataset and test dataset are train.lst
and fest.lst respectively, the optimization algorithm used is the Simplex algorithm, the
benchmarking algorithm used is the Teatline-based algorithm, the page segmentation
algorithm trained is the Docstrum algorithm, and the page segmentation algorithm tested
is the X-Y cut algorithm. We can also find the locations of the groundtruth files, image
files and training and test result files. Moreover, the suffixes for various files are given
for file name manipulation in the PSET APL

optimization algorithm parameter file (opr) and segmentation algorithm parameter
file (spr) are required to conduct objective function optimization. Samples of opr
and spr are shown in Figure 9. The generic file format of these sample files is shown
in Figure 2.

The Simplex Optimization
Algorithm Parameters
NDIM - 4 - -
CRIFLG _ nelder-mead # The)I(f\ Cut Page Segmentation
Algorithm Parameters
NMAX = 500
ALG.MODE = func_call
FTOL = 0.000001
TNX = 100
ALPHA = 1.0 .
INY =80
BETA = 0.5 TCX - 100
GAMMA = 2.0 TCY B 50
SIGMA = 0.5 -
P = 100,80,100,50
SCALE = 20,20,20,20

—~

a) (b)

Figure 9: Samples of an optimization algorithm parameter file (opr) and a segmentation
algorithm parameter file (spr). A sample file for the Simplex optimization algorithm is
shown in (a) and a sample file for the X-Y cut segmentation algorithm is shown in (b).
Their detailed parameter descriptions can be found in [12].

The optimal objective function parameter vector p# is stored in the optimal seg-
mentation algorithm parameter file (spr) shown in Figure 6. Users can substitute
their own objective function in place of the architecture shown in Figure 7(a) and
their own optimization algorithm module in the place of the Optimization Algo-
rithm module shown in Figure 6. Again, they need to write new parameter reading
functions and define corresponding data structures. This step generates two files,

9

#
File: TrainDocstrum_1,4,2.1,6.trr % File: TestXycut 78.32,35,54.ter
ﬁ Fmpm: training result of the Docstrum algorithm using Simplex algorithm. % Purpose: testing rewult of the X-Y cut algorithmn,
Jser: maosong User: maosons
Date: 09/18/2000/ 19:12:25 ﬁn?ir- 3:;/0,;3/“2’000/ 105833
Operating system: SunOS, 5.6, Generic 105181-19 ate: it L
& Machine name hanefar amad.ct # Operating system: Sun0S, 5.6, Generic_105181-19
Working directory: /hanzi/maosong/software/SegEvalToolKit/pset-1.0/experiments/ TrainDocstrum # Machine name: hangul.cfar.umd.edu
L i S—_— lorking directory: [a/hanzi/hanzi/maosong/soltware/pset- ‘experiments/Test. cut.
Machine type: sundu Working di y: [a/hanzi/hanzi g /soft ‘pset-1.0/experi Test Xy,
Command line: TrainSeg -p train protocol.trp -b bench.bpr -o simplex.opr -s docstrum.spr # Machine type: sundu
-w weight.wgt -t TrainDocstrum_1,4,2.1,6.trr -r docstrum_optimal 1,4,2.1,6 # Command line: TestSeg -p test_protocol.tep -b bench.bpr -s xycut_optimal.spr
-w weight.wgt -t TestXycut_78,32,35.54.ter
ght.wf

#Feval p[1] pl2] p[3] pld] score timing plow[l] plow|2] plow[3] plow[4] Flow
1 1000 4000 2100 6.000 39.874 2066 1.000 4.000 2100 6.000 39.874 # TmgnSpl nMrg nFA nSpll. nMrgL nMisL nFrrl, nGil. score timing
2 2000 4.000 2100 6.000 39.698 155.0 2000 4.000 2100 6.000 39.698 AOL 1 0 9 1 0 0 135 0.0293.060
3 1000 5.000 2.100 6.000 72063 2000 4.000 2100 6.000 39.698 AZ2 0 6 2 0 1 35 06002030
1 1000 4.000 3.100 6.000 075 2000 4000 2100 6.000 39.698 . 03 5 i
5 1000 4.000 2100 7.000 2002 2000 4000 2100 6.000 39.698 ‘:gg'} } 26 ; } (,]_2 g }3 g g‘g%’? z.ggg
6 1.250 4.250 2100 6.250 1722 2000 4.000 2100 6.000 39.698 o o ° b > e
7 1500 4.500 1.100 1604 2000 4.000 2100 6.000 0063 05 3 003 116 0.0262.890
8 1750 4.750 0.100 6. 38 1584 2000 4.000 2100 6.000 39.6¢ A007 4 0 o4 0 0 4 127 0.031 3.050
9 1438 1.600 6. 1750 4750 0.100 6.750 30.1% A008 1 0 2 1 0 0 1 104 0.010 2.610
018 5 1100 6. 1750 4750 0.100 6750 30.13 A009 1 0 2 1 0 0 1 47 0.0212.140
1 2312 2562 0.600 1750 4750 0100 6.750 AODAT 0 2 1 0 0 1 4500222170
12 L766 3.828 1225 6766 2312 2562 0.600 7.312 AOOB2 0 4 2 0 0 2 183 00113130
13 2531 3656 0.350 7531 27 2312 2562 0.600 7312 AOC 1T 0 4 11 0 0 11155 0.0712.770

. AODO 0 4 0 0 1 1 35 0.0292.000
160 2533 1975 0.647 7517 5336 1534 2535 1978 0.645 7.550 5336

2533 1.977 0.646 7.548 5.33 2 25 975 0.647 7547 5. e : : ; O
161 2533 1.977 0.616 7.518 5336 153 533 1975 0.647 7.547 5.336 —— % 5 0 % 65 o021 a5
Optimal Parameter_Vector = 975 0.647 7.547) ;
Optimal Performance_Value = 5,336 The average textline accuracy = 0.829185
End of the training. # nd of testing.

(a) (b)

Figure 10: Samples of a training report file format (a) and a test report file format (b).
The comment lines provide experimental environment information about the training and
test experiments. They are automatically generated by calling various GNU C functions.
They are crucial for replicating experimental results. In the data area, both intermediate
information and final results are recorded. This information can be used to analyze the
convergence properties of the training process and to study the statistical significance of
the test experiment results. A detailed description of each column entry can be found in

Figure 3(b) and Figure 4(b).

a training report file (trr) and an optimal segmentation algorithm parameter file
(spr). Figure 10(a) shows a sample training report file.

4. After the optimal objective function parameter vector p# has been found, the page
segmentation algorithm is evaluated on a given test dataset S. Figure 7(b) shows
the architecture of the test procedure. The test dataset S is specified in the test
protocol parameter data structure. Performance metric p is computed in module
B. Note that module C here has the same architecture as module C in Figure 7(a).
The computation of the final performance value ® is represented in module ®. Users
can define their own ® function by changing the Bench, BenchScoring, Compute
Average Score, and ® modules in Figure 7(b). This step generates a test report file
(ter) which records a performance score for each image in the test dataset as well as
a final average performance score over all images in the test dataset. Figure 10(b)
shows a sample test report file.

5. The statistical analysis of the test experimental results can be conducted using a
standard statistics software package such as S-PLUS [4] or SPSS [6].

10

4.3 Algorithm Calling Mode in the Segmentation Algorithm Module

An important feature of the PSET package is that there are two page segmentation
algorithm calling modes: function call and shell call. If the source code of a segmentation
algorithm is available as a function, the user can link the function into the training and
testing modules. In many cases, however, source code of a segmentation algorithm is not
available, but executable code is. In such cases the shell calling mode can be used to run
the segmentation algorithm from within the training or testing module. Furthermore, if
a segmentation algorithm source code is not well debugged, e.g., if it leaks memory after
each function call, the leaked memory can accumulate after many function calls and can
finally cause algorithm crash at some point. The shell call mode is a good solution to
this problem since in this case the executable code is used, and after each call all leaked
memory is freed. The disadvantage of the shell call mode is that it can be slower than
the function call mode. Figure 12 shows the architecture of the software implementation
of these two calling modes. A shell file is required in the page segmentation algorithm
shell call mode. A sample shell file is shown in Figure 11.

#! /bin/sh

Docstrum -t $1 -p $2 -u $3 -d $4 $5 §6 $7

Figure 11: A sample shell file.

Call Modg? l
jmentation
Experimental Generate SeA’qgomhm
Poamaas Shell Command Shell File
sh)

Figure 12: Page segmentation algorithm calling modes: function call and shell call. The
left half represents the function calling mode and the right half represents the shell
calling mode. The shell calling mode can be used only when the algorithm executable is
available; otherwise the function calling mode can be used. Note that the executable is
called by the function sh_c.

5 Hardware and Software Requirements

The PSET package has been developed in ANST C on SUN Ultra 1, 2, and 5 workstations
running the Solaris 2.6 operating system. The compiler used was GNU gcc 2.7.2. Two

11

public-domain libraries, DAFS and TIFF, were used in PSET and have been included
in the distribution. The DAFS data structure library [7] was used for manipulating
intermediate datatypes and the TIFF library [2] was used for image 1/0.

6 Future Work

We are currently generalizing the PSET package to include i) other metrics, ii) other
training/optimization algorithms, and iii) non-text region evaluation. Once the package
is in the public domain, we expect that the international community will add other
segmentation algorithms to the package. We are also porting the package to the Linux
platform. A visualization tool called TRUEVIZ [10] that can display the segmentation
and evaluation results of our PSET package is under development. For example, different
types of errors can be visualized in various colors. TRUEVIZ can also be used for
creating groundtruth for segmentation. Furthermore, we are developing an XML-based
representation for zone groundtruth and intend to migrate to this representation from
the current DAFS representation.

7 Summary

We have described the architecture and the file formats of a page segmentation evaluation
toolkit (PSET). The overall architecture and the file formats were described to illustrate
two major functionalities of the PSET package: i) automatically train a given page
segmentation algorithm on a given training dataset and ii) evaluate the page segmentation
algorithm with the optimal parameters found in i) on a given test dataset. The details
of the architecture and samples of file formats were then described as an implementation
of our five-step performance evaluation methodology. This paper is intended to assist
users in understanding, using, updating and modifying the PSET package. It will also
aid programmers who intend to add new algorithm modules to the package and interface
it with other software tools.

A Textline-Based Error Measures and Error Metrics

In the following sections, we define page segmentation, a set of textline-based error mea-
surements, and a performance metric that we used in our previous evaluation of page
segmentation algorithms [14, 13], These definitions are based on set theory and math-
ematical morphology [9]. We then define a general metric that users can customize for
their individual tasks.

A.1 Page Segmentation Definition

Let I be a document image, and let G be the groundtruth of 1. Let Z(G) = {ZqG,q =
1,2,...,#Z(G)} be a set of groundtruth zones of document image I where # denotes the
cardinality of a set. Let L(ZqG) = {l;’;,J =1,2,..., #L(ZqG)} be the set of groundtruth
textlines in groundtruth zone ZqG. Let the set of all groundtruth textlines in document

image [be £ = Uj&:Zl(G)L(ZqG). Let A be a given segmentation algorithm, and Seg(-,-) be
12

the segmentation function corresponding to algorithm A. Let R be the segmentation re-
sult of algorithm A such that R = Sega(I,p?) where Z(R) = {ZF|k = 1,2,...,#7Z(R)}.

Let D(-) C Z? be the domain of its argument. The groundtruth zones and textlines
have the following properties: 1) D(ZqG) N D(qu) = ¢ for ZqG,Zqu € Z(G) and ¢ # ¢,
and 2) D(IE) N D(I5) = ¢ for IF,15 € L and i # ',

RS

A.2 Error Measurements and Metric Definitions

In this section, we define four error measurements and a metric. Let Ty, Ty € ZTU{0} be
two length thresholds (in pixels) that determine if the overlap is significant or not. Each
of these thresholds is defined in terms of an absolute threshold and a relative threshold.
The absolute threshold is in pixels and the relative threshold is a percentage. Ty and Ty
are defined as follows:

Tx = min{ HPIX, (100 — HTOL) - h/100} (1)

Ty = min{VPIX, (100 — VTOL) -v/100} (2)
where HPIX and VPIX are the the two thresholds in pixels, HT'OL and VTOL are

the two thresholds in percentages, and h,v are the minimum width and height (in
pixels) of two regions that are tested for significant overlap. Users must specify the

HTOL,VTOL,HPIX and VPIX parameter values in the benchmark algorithm pa-
rameter file (bpr). Figure 13(b) shows a sample benchmark algorithm parameter file.

weight file
The Textline-Based Benchmark
Algorithm Parameters wSpl = 0
wMrg = 0
B wMis = 0
HTOL =90 WFA - 0
VIOL =380 wSplLine = 1
HPIX =11 wMrgLine = 1
VPIX =38 wMisLine = 1
wFAZone = 0

(a) (b)

Figure 13: Samples of a benchmark algorithm parameter file (bpr) (a) and a weight file
(wgt) (b).

Let E(Tx,Ty) ={e € Z* —Tx < X(e) < Tx,—Ty < Y(e) < Ty} be a region of a
rectangle centered at (0,0) with a width of 27'x + 1 pixels, and a height of 2Ty + 1 pixels
where X(-) and Y(-) denote the X and Y coordinates of the argument, respectively.
We now define two morphological operations: dilation and erosion [9]. Let A, B C Z2.
Morphological dilation of A by B is denoted by A & B and is defined as A& B =
{c€ Z*|lc=a+b for some a € A, b€ B}. Morphological erosion of A by B is denoted
by A& B and is defined as A& B = {ce Z*c+be A for every b€ B}.

We now define three types of textline based error measurements:

1) Groundtruth textlines that are missed:

Cr, = {15 € LID(19) & E(Tx,Ty)
13

C (Uzrez(myD(ZP))},
2) Groundtruth textlines whose bounding boxes are split:
Si, = {19 € LI(D(1%) & E(Tx,Ty)) N D(Z7) # ¢,
(D(I%) & E(Tx, Ty)) N (D(Z7))° # ¢,
for some ZF ¢ Z(R)},
3) Groundtruth textlines that are horizontally merged:
My, = {zg. € L3S, € £L,ZR € Z(R),q # ¢,
ZqG,ZqC,; € Z(@) such that
(D(l;) © E(Tx, Ty)) N D(ZF) # ¢,
(D(ly50) © E(Tx, Ty)) N D(Z7) # ¢,
((D(I5) © E(0,Tv)) & E(00,0)) N D(Z3) # ¢,
(D(1G) & B(0,Ty)) & B(oo,0)) 0 D(Z%) # 6}.
4) Noise zones that are falsely detected (false alarm):

Fi = {27 € Z(RID(Z") € (Vieee(D(%) & B(L, 1))}

Let the number of groundtruth error textlines be #{Cr U S;, U M} (mis-detected, split,
or horizontally merged), and let the total number of groundtruth textlines be #L£. We
define the performance metric p(I, G, R) as textline accuracy:

CHL—#{CLU S, U M)
_ Y .

In the PSET package, we also define some other error measurements. Table 2 shows
the error measurements, the metric defined in the PSET package, and the corresponding

p(1,G, R)

symbols used in the above discussion.

Table 2: Summary of error measurements and the corresponding symbols defined in this
section.

Error Measure Defined | Equivalent Term | Description

in the PSET package | in this Section

nSpl none The number of split errors.

nMrg none The number of horizontal merge errors.

nFA #Fy, The number of false alarm errors.

nSplL #5Sr, The number of split textlines.

nMrgL #Mj, The number of horizontally merged textlines.

nMisL #C, The number of mis-detected textlines.

nErrL #{Cr, U S, UM} | The number of error texilines (textlines that are
either split, horizontally merged or mis-detected).

nGtl #L The number of groundtruth textlines.

In general, the performance metric can be any function of the error measures shown
in Table 2. In the PSET package, a performance metric can be defined as a weighted
sum of these error measures in function BenchScoring. Let wSpl be the weight of the
error measurement nSpl. The weights of other error measurements are defined similarly.
A general performance metric is defined as follows:

14

N = wSplxnSpl+wMrg+«nMrg+ wFAxnFA+ wSplL xnSplL
+wMrgL x nMrgl +wMisL x nMusl,

D = wSpl+wMrg+wFA+ wSplL +wMrgl +wMisl,

PG R) = 3

Figure 14 gives a set of possible errors as well as an experimental example.

Horizontally
split

Vertically
Spliton
Bounding '
Box L' | Horizontally

Merged

Verticaly
Merged

Ll Vertically
split

Missed
Detection

False Alarm

Volume 80 Annals
Number 1 of the &
1993 Missouri |

() (d)

Figure 14: (a) This figure shows a set of possible textline errors. Solid-line rectangles
denote groundtruth zones, dashed-line rectangles denote OCR segmentation zones, dark
bars within groundtruth zones denote groundtruth textlines, and dark bars outside solid
lines are noise blocks. (b) A document page image from the University of Washington I11
dataset with the groundtruth zones overlaid. (¢) OCR segmentation result on the image
in (b). (d) Segmentation error textlines. Notice that there are two horizontally merged
zones just below the caption and two horizontally merged zones in the middle of the
text body. In OCR output, horizontally split zones cause reading order errors whereas
vertically split zones do not cause such errors.

Acknowledgement

We would like to thank Dr. Kise of Osaka Prefecture University for providing us with a
software implementation of his segmentation algorithm and modifying it for our evalua-

15

tion purposes; Glenn van Doren of the Department of Defense for supporting this effort;
and Dr. Azriel Rosenfeld of the University of Maryland for his comments.

This research was funded in part by the Department of Defense under Contract MDA

9049-6C-1250, Lockheed Martin under Contract 9802167270, the Defense Advanced Re-
search Projects Agency under Contract N660010028910, and the National Science Foun-
dation under Grant 1159987944.

References

[1] DARPA Broadcast News Workshop, Herndon, VA, Feburary 1999.
http://www.itl.nist.gov/iaui/894.01/publications/darpa99/index.htm.

[2] Aldus Corporation. TIFF. ftp://sgi.com/graphics/tiff/.

[3] A.D. Bagdanov. The fourth annual test of OCR accuracy. In A. D. Bagdanov, editor,
Annual Report. Information Science Research Institute, University of Nevada, Las
Vegas, NV, 1995.

[4] R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language. Wadsworth
& Brooks/Cole, Pacific Grove, CA, 1988.

[5] D. Dori, L. Phillips, and R. M. Haralick. Incorporating documentation and inspection
into computer integrated manufacturing: An object-process approach. In S. Adiga,
editor, Applications of Object-Oriented Technology in Manufacturing. Chapman &
Hall, London, UK, 1994.

[6] J.J. Foster. Data Analysis Using SPSS for Windows — A Beginner’s Guide. SAGE
Publications, London, UK, 1998.

[7] T. Fruchterman. DAFS: A standard for document and image understanding. In
Proceedings of Symposium on Document Image Understanding Technology, pages
94-100, Bowie, MD, October 1995.

[8] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Software Engineering. Prentice Hall,
Englewood Cliffs, NJ, 1991.

9] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-Wesley,
Reading, MA, 1992.

[10] T. Kanungo, C. H. Lee, J. Czorapinski, and I. Bella. TRUEVIZ: A
groundtruth/metadata editing and visualizing toolkit for OCR. In Proceedings of
SPIE Conference on Document Recognilion and Retrieval, San Jose, CA, January
2001.

[11] K. Kise, A. Sato, and M. Iwata. Segmentation of page images using the area Voronoi

diagram. Computer Vision and Image Understanding, 70:370-382, 1998.

16

[12]

[14]

[15]

[16]

[17]

S. Mao and T. Kanungo. A methodology for empirical performance
evaluation of page segmentation algorithms. Technical Report CAR-

TR-933, University of Maryland, College Park, MD, December 1999.
http://www.cfar.umd.edu/kanungo/pubs/trsegeval .ps.

S. Mao and T. Kanungo. Automatic training of page segmentation algorithms:
An optimization approach. In Proceedings of International Conference on Paltern
Recognition, pages 531-534, Barcelona, Spain, September 2000.

S. Mao and T. Kanungo. Empirical performance evaluation of page segmentation
algorithms. In Proceedings of SPIE Conference on Document Recognition and Re-
trieval, pages 303-314, San Jose, CA, January 2000.

G. Nagy, S. Seth, and M. Viswanathan. A prototype document image analysis
system for technical journals. Computer, 25:10-22, 1992.

L. O’Gorman. The document spectrum for page layout analysis. IEEFE Transactions
on Pattern Analysis and Machine Intelligence, 15:1162-1173, 1993.

T. Pavlidis and J. Zhou. Page segmentation and classification. Graphical Models
and Image Processing, 54:484-496, 1992.

E. M. Voorhees and D. K. Harman, editors. The Seventh Text RFtrieval
Conference (TREC 7). National Institute of Standards and Technology, 1998.
http://trec.nist.gov/pubs.html.

17

